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The structure of fully developed turbulence in smooth circular tubes has been
studied in detail in the Reynolds number range between 10,700 and 96,500
(R based on centre velocity and radius). The data was taken as longitudinal
and transverse correlations of the longitudinal component of turbulence in
narrow frequency bands. By taking Fourier transforms of the correlations, cross-
power spectral densities are formed with frequency, w, and longitudinal or
transverse wave-number, &, or k,, as the independent variables. In this form the
data shows the distribution of turbulence intensity among waves of different size
and inclination, and permits an estimate of the phase velocity of the individual
waves.

Data taken at radii where the mean velocity profile is logarithmic show that
the waves of smaller size (higher (k2 + 42)%) decrease in intensity more rapidly
with distance from the wall than the larger waves, and also possess lower phase
velocity. This suggests that the waves might constitute a geometrically similar
family such that the variation of intensity with wall distance is a unique function
with a scale established by (k2 + k2)~%. The hypothesis fits the data very well for
waves of small inclination, & = tan—1(k,/k,), and permits a collapse of the in-
tensity data at the several radii into a single ‘wave-strength’ distribution. The
function of intensity with wall distance which effects this collapse has a peak at
a wall distance roughly equal to 0-6(k2 + k2)~%. For waves whose inclination is
not small, it would not be expected that the intensity data could collapse in this
way since the measured longitudinal component of turbulence represents a com-
bination of two turbulence components when resolved in the wave co-ordinate
system.

Although the similarity hypothesis is strictly true only for data taken where the
mean velocity profile is logarithmie, a simple correction procedure has been dis-
covered which permits the extension of the similarity concept to the sublayer
region as well. This procedure requires only that the observed total turbulence
intensity at any station in the sublayer be reduced by a factor which depends
solely on the y+ distance from the wall (i.e. on the distance from the wall, scaled
by the viscid parameters of the sublayer). The correction factor is independent
of Reynolds number and applies equally to waves of all sizes. In this way, all of
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the turbulence waves down to the very smallest of any significance, are found to
satisfy slightly modified similarity conditions.

From the data taken at Reynolds numbers between 96,500 and 46,000 wave
‘strength’ is seen to be distributed more or less uniformly over a range bounded
at one extreme by the largest waves which the tube can contain (k2+ k2 x (2/a)?,
where @ is the tube radius) and at the other extreme by the smallest waves which
can be sustained against the dissipative action of viscosity (k2 + k2 ~ (0-04v/U,)?,
where U, is the shear velocity). As the Reynolds number of the flow is lowered,
the spread between the bounds becomes smaller. If the data is projected to a
Reynolds number of order 10% the bounds coalesce and turbulence should no
longer be sustainable.

1. The nature of the data

Steady, fully developed turbulence in a straight smooth circular tube repre-
sents one of the simplest cases of shear flow turbulence. The structure of this
turbulence, that is, the description of the turbulent velocity field by two-point
space-time correlations, is the concern of the paper. The dependent variables are
the three velocity components which have six pair combinations. The inde-
pendent variables are the three space co-ordinates z, y, z (defined in figure 1) and
time, t. Assuming that correlations are stationary in the z, z, and ¢ variables, there
are then only five arguments for correlation functions: x, —x,, 2, — 2, t; — 22, ¥1,
ys. A complete description of turbulence structure therefore requires six func-
tions of five arguments each. Even if such massive data were available, it would
be necessary somehow to extract essential simple features before it could be
understood and made use of.

Fieure 1. Co-ordinates and velocity components.

The data reported here deals only with u,u, correlations (velocities defined in
figure 1). The arguments x, —,, 2, —z,, and ¢, —{, are explored extensively at
different y, but no correlations are taken where y, is different from y,.

Correlations taken in a ‘stationary’argument such as x;, —z, or {, —{, may be
Fourier transformed in that argument to yield power spectral densities with the
corresponding transform arguments being k, and w. Since the variable z is
closed, correlations must be periodicin 2, — 2, and in a strict sense a Fourier trans-
form cannot be taken, but rather a Fourier series expansion should be used.
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Practically, significant correlations are restricted to asmall arc (about one radian)
so that a Fourier transform in 2, — z, can be effected simply by requiring the corre-
lation to vanish at all large arguments. The corresponding transform argument
is k,. For the y co-ordinate, the lack of stationarity prohibits Fourier transforma-
tion, although an eigenfunction expansion of any correlation can be effected
by the solution of an integral equation with the correlation as the kernel
function (Lumley 1967). Since no data was taken with ¥, = y, these manipula-
tions are not possible here, but the interpretation given below of the existing
data shows that much insight into turbulence structure can be gained without
resort to this complexity.

Correlation functions and power spectral densities are conjugate ways of
expressing the same data. The data reported here was taken in mixed form; that
is, frequency filters were used so that the transform in the time variable already
existed, but spatial co-ordinates were the other natural arguments. For a con-
gistent treatment it was necessary either to invert the time transform or perform
the spatial transforms. The latter course was selected because of ample evidence
given by visualization techniques (Runstadler, Kline & Reynolds 1963) that
pseudo-periodic structures existed, and the description of such structures is
more concise in the transform variables. Further justification of this course will
be given below.

Consider briefly the kind of data generated at a fixed distance from the
surface, y. The power spectral density is a function of the three variables %,, &,
and w. It is real and is unchanged if the signs of all three arguments are reversed.
Therefore we may ignore the negative régime of any one of the arguments and
so adopt the convention that w > 0. Further, since the time average flow is free
of swirl the correlations must be symmetric in z, —2, and the power spectral
density must be symmetric in k,. Therefore only the régime &, > 0 need be
described. Finally, with @ > 0 the régime %, > 0 corresponds to waves with an
upstream phase velocity. Previous investigations have shown that negligible
turbulence energy exists in such wavest so that the region %, > 0 need not be
considered. For convenience the sign of k, will be reversed throughout this paper.
Thus, when the power spectral density in the region w > 0, k, > 0, k, > 0 is
described, the reader should understand that the waves are in fact propagating
downstream and that the power is in fact divided equally between waves of
positive and negative £,.

To generate the three-dimensional power spectral density defined above it is
necessary to take a series of correlations in narrow frequency bands and vary
the spacings x, —, and z, —z, jointly. The investigation here was less ambitious:
x, — %, was kept at zero while 2z, —z, was varied, and vice versa. When the trans-
forms of the z, —z, correlations (with x;, —x, = 0) are taken, the resulting two-

t For example, the data of Favre, Gaviglio & Dumas (1958) show that a local space
correlation at zero delay has a characteristic scale which is an order of magnitude smaller
than the characteristic scale when the optimum time shift is used. This demonstrates
the strong anisotropy of the Ax, At correlation and corresponds to & dominant concentra-
tion of power in disturbances propagating with the stream. The surface pressure date

of Willmarth & Wooldridge (1962) show even more clearly the absence of any significant
upstream propagation.
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dimensional power spectral density P(w, k,) is the integration in k, of the full
three-dimensional P(w, k,, k,). This can be thought of as the integrated ‘pro-
jection’ of P(w, k,, k,) on the &k, = 0 plane (figure 2). Similarly, the transforms of
the z; —z, correlations (taken with 2z, —z, = 0) give the integrated ‘projection’
of P(w, k., k,) on the k, = 0 plane.

Plw, ks, k)

P(w, k)

wlk,=C,

Lk =R KDY

k. lk.=tan «

ke
F1cuRrE 2. Schematic of power distribution in wave-number frequency space.

Fourier transforms of correlation functions give power spectral densities
which have the interpretation of power contained within an element of unit
width in the frequency or wave-number co-ordinate. Even if the total power is
normalized to unity (as is done here) the spectral density has the dimensions of
inverse frequency and wave-number. Turbulence in tube flow covers a range of
frequency and wave-number on the order of 1000:1, so that a two-dimensional
P(w, k) or P(w, k,) will cover a range of 108: 1, while P(w, k,, k,) will cover a range
of 10°: 1. Just as logarithmic scales are very useful for the display of the w, k,
and k, co-ordinates, so it is convenient to introduce other spectrum functions

Plw,k,) = wk,Pw, k), (la)
P(w, k,) = ok, P(w,k,), (1b)
Pw,k,, k,) = ok,k,Plo,k,,k,), (1¢)

x0T sV Ve
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which offer several advantages:

(1) they are non-dimensional and the range of interest is about one order
of magnitude.

(2) They represent the power in a frequency wave-number region proportional
in size to the location of the region. This permits direct comparison of the relative
power in bands with identical ratios between the upper and lower band limits,
i.e. over the same absolute increment on the logarithmic scale.

(3) They are complementary to the logarithmic co-ordinate display since
total power is the simple integral of these spectrum functions in the log co-
ordinates.

All of the results given in this paper will use these spectrum funections and log
co-ordinates.

It has long been known (Laufer 1953) that tube flow turbulence is charac-
terized by a thin layer near the surface where viscosity plays an important role,
while in the bulk of the flow (where the mean velocity profile is logarithmic) the
phenomena are essentially inviscid. Corresponding to these two régimes the non-
dimensionalization of variables is either of the Reynolds or Strouhal variety
and neither one will collapse the data throughout the entire field. In this paper
an arbitrary choice of Reynolds scaling is made. Thus, with U, as the customary

shear velocity, the non-dimensional variables are:
yt=yUly, K =Iky|U, | @
ot =wv|U% kf =ky/U, |

As mentioned above, two- and three-dimensional power spectral densities are
given in normalized form:

1= ﬁfw Plot, b, k) dot dt die
0

- f f " P(oh b k) d(n o) din kF) d(n k),

© o (3)
= I, P dsra = [ 2 ke atni

1= Hm P(ot, k) dot di} = f fw Pl k) d(n w¥) d(n k).
0 —®

To find absolute spectral levels at any specified distance from the surface it
is necessary to multiply these normalized functions by the total turbulence
intensity u? at the y*. The non-dimensionalized form of the intensity is

I(yt) = wi(y™)|UZ (4)

All of the data reported here were obtained by hot-wire anemometers in air
in a 5-25 in. diameter tube. Six Reynolds numbers (based on centre-line velocity
and the tube radius) in the range 10,700-96,500 are represented, corresponding
to a range of shear velocities of 0-45-2-80ft./sec. The details of the experimental
technique and reduction of the data are given by Morrison (1969). Confirmation
that the data is consistent in its grossest details with other investigations is
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afforded by the mean velocity profile (figure 3) and the intensity distribution
(figure 4 (a) and 4(b)).

Figures 5(a) and 5(b) show a sample of the data in the form in which it is
generated. These are correlations (transverse in this case) in narrow frequency
bands. The scatter seen in these figures is characteristic of the entire body of
data. By taking the Fourier transforms of the correlations of figures 5(a) and
5(b) and then multiplying by the measured frequency spectral density shown in
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Ficure 3. Comparison of mean velocity. Data taken by hot wire. Reynolds number:
0, 17,0005 I, 46,500; A, 96,500; , universal velocity profile.

figure 6, the two-dimensional spectrum function of figure 7(a) is generated. In
a similar way all of the figures 7 (a)-7 (r) are formed and these comprise the body
of data to be studied here. The marks on the inside edge of the w* scale in these
figures indicate the frequencies at which transverse or longitudinal correlations
were actually taken in each case. Table 1 lists the flow conditions corresponding
to the 18 parts of figure 7 and in addition lists 5 other # figures which are reported
by Morrison (1969) but which have been omitted here.

Correlations and their transforms (spectra) are, of course, entirely comple-
mentary and no information exists in one which is not present in the other. This
is not to say that the two forms of presentation lead to equally simple interpreta-
tion. It was noted above that the data of Runstadler ef al. (1963) suggested that
a natural wavelike structure exists in boundary layers. Also the linearized
perturbation form of the Navier—Stokes equations in the presence of a mean
shear field exhibit vorticity wave solutions (see, for example, Landahl 1967).
Finally, figures 7(o) and 7(¢) show turbulence disturbances to propagate at
speeds significantly different from local flow speed and give evidence of wave
structure with significant extent in the direction of the mean velocity gradient.
These then constitute reasons for expecting special results from a spectral treat-
ment of the data. One such result is a geometric similarity law which is developed
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in the next section. Before proceeding to this development is is relevant to
observe that the mathematical statement of geometrical similarity is contained
in equation (11) which essentially represents the factorization of a spectrum
function into a product. This means that if the data analysis had been performed
on correlations rather than spectra we would have been seeking a decomposition
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Figure 4. Turbulence intensity. (¢) Reynolds number: O, 17,000; O, 46,500; A,
96,500; +, 250,000, Laufer (1953); x, 15,200, Clark (1968). (b) Reynolds number: O,
17,000; 1, 46,500; A, 96,500; +, 250,000, Laufer (1963).
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of the raw data into a convolution of two unknown functions. The possibility of
such a decomposition representing the data would probably not even have
occurred to us.

0 100 200 300 400 500 600 700 800 900
Transverse separation (zt)

5 7]

0 100 200 300 400 500
Transverse separation (z+)
Ficure 5. uu correlation in frequency bands with transverse separation y+ = 7.3,

U, = 1:50. (a) wt: O, 0-00170; O, 0-0036; A, 0-0072; v/, 0-0145; x, 0-0184. (b) w:
O, 0-:029; 0, 0:041; A, 0-058; v/, 0-097; x, 0-194; @, 0-33.
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Figure 6. Normalized frequency spectrum. y+ = 7-3, U, = 1-50.
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Ficure 7(c). Plwt, kt), yt = 3-80, U, = 1-50. Fiaure 7(d). P(o+, kF), y+ = 73-0, U, = 1-50
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U‘f
Figure (ft./sec) R,=U,aly y (in.) yla yt I(yt)
P(wt, k)
* 0-45 10,700 0-007 0-0026 1-6 0-25
7(m) ; { 0-010 0-0038 3:0 13
7(n) } 0-60 17,000 0-020 0-0076 59 60
* 0-80 24,000 0-050 0-019 20-0 84
7(a) 0-010 0-0038 73 62
7(b) _ 0-020 0-0076 14:6 7-8
7(c) 1:50 45,600 0-050 0-019 38.0 6-7
7(d) 0-100 0-038 73.0 48
7(e) 0-050 0-019 490 56
) ) 0-100 0-038 990 46
7(9) 200 65,300 0-200 0-076 198 43
7(h) 0-400 0-152 395 3.7
7(3) 0-010 0-0038 13:9 81
() , 0-020 0-0076 27-8 68
7(k) 2:80 96,500 0-100 0038 139 45
7() 0-200 0-076 278 42
P(w, k)
* 0-45 10,700 0-007 0-0026 16 0-25
7(0) } ' { 0-010 0-0038 3.0 1-3
* 0-60 17,000 0-020 0-0076 59 6-0
* 0-80 24,000 0-050 0-019 20-0 84
7(q) } ) { 0-020 0-0076 14-6 7-8
7(r) 1-50 46,500 0-100 0-038 780 48
7(p) 2-00 65,300 0-200 0-076 198 43

* May be found in Morrison (1969).

TaBiE 1.
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2. Reduction of the data

The primary purpose of this paper is to show that the data shown in figures 7 (a)
to 7(r) (representing over 4000 correlation data points) can be efficiently com-
pressed in a logical manner which, at the same time, gives a simple physical
meaning to the result. Before doing this it is important that the interpretation
of wave geometry be clear. A point in wt, k}, k} wave space represents a wave
with total wave-number Kty = (k4 k), (5)

with lines of constant phase inclined to the x axis (tube axis) at the angle
a = tan~! (kf [k7), (6)

when projected radially outward to the tube surface. Such a wave exhibits a
streamwise phase velocity C+ = Wtk = OJU

- T (7)
and a circumferential phase velocity (projected on the tube surface) of
Cf = wtfkf = /U, (8)

These properties are referred to in figure 2 and in the wave schematic diagram,
figure 8. Because of the symmetrical distribution of wave power in %,, right-
handed and left-handed helical waves are equally strong. In the diagrams of
figure 7, loci of constant phase velocity have unit slope.

There are two general features of the spectrum functions to be observed. First,
for P(wt, k}) data taken in the log layer, the ‘ridge’ of the spectral distribution
corresponds to C, between about 14U, and 22U,. For the data taken in the sub-
layer the C, at the spectral peak drops as low as about 8U,. Because of the limited
total range of €}, for almost all of the data it is possible to make the rough
correspondence, w* ~ 15k . In this way the plots of 2(wt, kf) may be viewed
approximately as 2(k}, k) with a shift of the vertical scale upward by a factor
of 15. That is, the #(w™, &) roughly represents the distribution of power among
waves of various sizes and inclinations. (A locus of constant inclination, «, has
then approximately a unit slope in these plots.)

Following upon this fact, the next general feature to be observed from the
P(wt, k) is that by far the largest amount of power is found in waves of relatively
small inclination, a. For the smallest waves, sublayer data shows the dominant
to be about {radian while for the largest waves the log layer data places « at
about #;radian. These are waves highly elongated in the x direction, a fact
roughly indicated by the early data of Grant (1958) and Favre et al. (1958) for
the longitudinal turbulence component.

Now we shall try to compress the (v, k) data for stations in the log layer
(yt > 70) for the several Reynolds numbers. The clue for the procedure is best
seen from a comparison of figures 7 (¢) and 7 (k) (U, = 2-0). Here it is very apparent
that in going from y+ = 49 to y* = 395 there is a strong shift of power away from
the high &F. That is, the small waves are relatively weaker at the larger distance
from the wall. It is on the basis of this evidence that we make the key hypothesis
of this work. If a wave with a small dimension projected on the tube surface,

9 Fluid Mech. 39
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Aft, has a small radial extent, y*, while a large wave has a large radial extent,
it is possible that waves of all sizes may be geometrically similar. By this we
mean that each of the velocity components of the wave (2, v and ¥ as defined in
figure 8) would be a unique function of y+/A{,; independent of the size or inclina-
tion of the wave and differing only in strength from wave to wave.{ In particular
this would require the intensity of each velocity component to be a unique
function of &k, y+ (note ki, = 2m/Afy).

X, u

C,=C/sin a, phase velocity

C, wave speed

C.=CJcos «, phase velocity

N>
>

Locus of constant phase

Cross section of wave

Projected mean velocity

Ficure 8. Wave schematic diagram.

How may this hypothesis be tested? The available data describe the spectral
power in %, which is actually a combination of 4 and @,

u = fcosa+@sin . 9)

Therefore it is a mixture of 2 spectra and @ spectra and their cross-spectral density

as well.} If we wish to separate out the 4 or @, it is necessary to select either

t Some of the analytic consequences of geometric similarity are discussed in the
appendix.
1 For a precise discussion of this point see the appendix.



Structural stmilarity for turbulence in smooth tubes 131

small « or large « data. The choice is obviously small . Next it is necessary to
form the absolute spectral level at each y*+ by taking the product

Pk y) = L") Pt k). (10)
Following this we choose a variety of representative points (w*, k] ) throughout
the data field, but corresponding to small « (i.e. wt/kf < 4). With a small we also
have ki, ~ k. We now regard y*, or more precisely, ki,,y*, as the relevant

indepenident variable and plot 2 vs. k. y* for each of the chosen points (w™, k7).
If the similarity hypothesis is valid, it should be possible to find a radial distribu-
tion funetion for intensity, f(ki,;y*), applicable to all waves, such that all the
invididual plots of Z can be represented by the factorization:
P, Koy = flkioyt) Al k). (11)

Here A(wt, k) is a function which we will call the wave strength, which depends
on the size and inclination of the particular wave. The data for U, = 2:80 and
U, = 2:0 do in fact collapse on this basis giving the f(k#,,y*) shown in figure 9
and the 4 distributions shown in figures 10 and 11 (actually only the solid portions
of the 4 contours, since these correspond to the small «). Since a product de-
composition of the form of (11) is arbitrary to the extent of a scalar multiple
of one factor, f has been chosen so that its maximum has a value of unity.

The quality of the collapse of the data can be judged from figures 7(f) to 7 (h).
The dashed contours in these figures represent the # calculated backward from
the A4 of figure 10 and f of figure 9. In no case do the values given by the calculation
differ from the data by more than 15 %, of the maximum value of £ in the par-
ticular figure, with typical differences less than 7 %,.
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Ficure 9. Wave intensity function for 4.

3. Extension of the data reduction to low y

If the #(w*, kF) data for y* = 27-8 and y* = 13-9 with U, = 2-80 (figures 7 (i)
and 7(j)) are compared with the predictions derived from the 4 and f just calcu-
lated, it happens that the shape of the predicted # distributions match the
data, but their general level is much lower. This suggests that perhaps the
similarity concept can be extended to y* < 70 by the simple expedient of
reducing the experimental I(y+) by a correction factor. This expedient works very

9-2
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well, and the appropriate correction factor is given in figure 12. Not only does it
work for the U, = 2-80 data, but also for U, = 2:0 and U, = 1-50 as well. (Since
only one y* > 70 was available for U, = 1-50, it could not be treated without the
correction. With the correction, the dataat y+ = 7-3, 14-6 and 38 are used together
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Ficure 10. Wave strength, 4. U, = 2-82 ft.fsec, B = 96,500.
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Figure 11. Wave strength, 4. U, = 2-0 ft.[sec, R = 65,300.
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with y* = 73.) The resulting 4 for U, = 1-50is seen in figure 13. Some idea of how
well this correction works is given by figure 7 (¢). Here a 17 9, reduction of I(y*)
has been used and the ‘backward’ calculation of 2 from A and f is seen to be
excellent.

There is a simple mechanism which seems to explain most of the correction
used. The similarity hypothesis which proved successful in collapsing the 4 data
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Fiaure 13. Wave strength, A. U, = 1-48 ft./sec, B = 46,500.
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in the log layer should, of course, apply to all wave velocity components, although
with different radial distribution functions. If one writes the linearized Navier—
Stokes equations in the wave co-ordinates £, y, and 2 shown in figure 8 (as in
the appendix), the equations containing » and @ are independent of % and may
be solved separately. The resulting » may then be used in the equation for 4
where it appears as a ‘driving’ term multiplying dU/dy. Since the solution
for v is only slightly affected by the deviation of the mean velocity profile from
logarithmic near the wall (i.e. v retains its similarity properties), the driving
term in the & equation will increase at low y* as dU/dy becomes larger than that
which the log function would show, were it to extend that far. The difference
produces a local deviation of 4 from log law similarity. Reasoning in this way,
a correction to % (which is, of course, u for waves of small ) can be estimated as
shown in figure 14. From the actual mean velocity profile and the experimentally
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F1cUurE 14. Prediction of intensity correction factor.

measured root-mean-square u fluctuation, a representative displacement of
fluid normal to the wall is deduced. The displacement is used in turn to obtain
an apparent root-mean-square % fluctuation, which would have been found had
the log profile persisted to lower y+. The square of the ratio of the apparent
to the true u is the predicted intensity correction factor shown in figure 12.
The prediction is excellent down to a y* of 25 where, apparently, direct effects
of viscosity become important.

In summary, the experience with the intensity correction suggests that while
@ deviates from strict similarity for y* < 70, v does not deviate from similarity
until y* < 25. Whether or not this interpretation of the data stands up under
further detailed measurements, the experimental fact remains that the simple
expedient of adjusting intensity works, and works independently of the size
and inclination of the individual waves. While the data for the three Reynolds
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numbers in question extends only to y* = 7, the (w™, k) at lower Reynolds
number, figures 7(m) and 7 (n) exhibit very small changes of spectral distribution
between y+ = 10 and the wall, so it is highly probable that an intensity correction
will work right down to y*+ = 0.

4. Extension of the data reduction to large «

Aslong as we are studying only small &, the wave size is determined essentially
by k} and it is never necessary to invoke the approximation wt ~ 15kf specifi-
cally. The assumption actually used is simply that each point with co-ordinates
(w*t, k) correspond to some (kf, kF) and the same (k3 , k) at each y+. In fact the
assumption can be relaxed further, so that &k} is permitted to occupy a small
band of values at each w* provided the band is the same at each y+. However,
when considering large a, it is advisable to have the best possible estimate of
k} since it figures importantly in kiot.

Since we already have convincing evidence that turbulence waves are geo-
metrically similar, the similarity property can be used to estimate C,. The im-
portant region for wave interaction with the mean flow is the so-called critical
layer (Lin 1955) where the wave speed matches the mean flow speed. For a similar
family of waves it is shown in the appendix that height of the critical layer, yg,
will scale with Afy, i.e. ki, yg = const. To check this point experimentally would
require the full three-dimensional power spectral density P(w, k,, k,) shown in
figure 2, and not just the two projections P(w, k,) and P(w, k,) actually available.
Interpreting the projected data in the most favourable way (by an analysis too
detailed to report here), we conclude that, although there is a considerable spread
in the results, k,,yy = 0-6 is a reasonable approximation. Using this, a choice
of ki, yields a value of y§ which in turn gives C'} from the mean velocity profile.
A second choice, that of w™, yields &} and thence k}. Thus we have a unique
implicit relationship between (w+,k}) and (kF, k).

In §2 we observed that

%= flcosa+Dsina. (9)

Thus, as a increases, the content of % shifts from 4 to #. While we certainly
expect @ to be similar for different size waves, it may have an intensity distribu-
tion function different from the f(kit,,y+) which characterizes 4.

If we denote the similarity function for w as g,, as in the appendix, data for
tana > 3 (where #isunimportant)shows thatg, has amaximum shaped very much
like the maximum of f but located at an argument, ki y+, nearly 4-5 times as
large. Data for intermediate o consistently show similar maxima, the location pro-
ceeding smoothly from the location of fmax to the location of gmax as tana
increases from } to 3. This suggests that the function f might be used at all «,
provided its argument were modified to be a function of «. Introducing the
function o(x) shown in figure 15, which describes the shift of the maximum
relative to the original maximum of f, we try the correlation f(kiyy*/o(e)) for
all the a previously omitted. This works very well, in fact, as well as the original f
for small e, and has been used to produce the dotted portions of the 4 contoursin
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figures 10, 11 and 13. It is our opinion that while the location of maxima and the
intensities near maxima are well fitted by this simple scheme, it is unlikely that
go far away from maximum will indeed resemble f very closely. Our data here is
weak and direct measurements of w (transverse velocity in the tube co-ordinates)
are needed.

It is of interest to note that data taken at low y* displaying large « is subject
to two correction procedures. These seem to be applicable concurrently since the
data treated in this way collapse with no worse accuracy than the data in general.
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FieurE 15. Dependence of intensity peak on wave inclination.

5. Comparison of the different Reynolds numbers

The figures 10, 11 and 13 show the wave strength for successively decreasing
Reymnolds numbers: 96,500, 65,300, and 46,500. Although wave data were taken
down to B = 10,700, at any particular R this does not cover a sufficiently large
range of y+ to permit a reliable calculation of 4. However, within the more limited
range for which 4 is given, some distinct trends may be seen.

First, the high &} end of the figures show a pattern of distribution of strength
among the small waves which is substantially independent of Reynolds number
to the degree of accuracy of the data. These waves have a characteristic dimen-
sion matched to the dimension of the sublayer. Their wavelength is of order
Ayt = 150 and their C, is about 9U,. This latter value places the ‘critical layer’ of
these smallest waves at a y*+ = 12, These waves are equally divided between right-
and left-hand helical components which exhibit opposite circumferential phase
velocity. The combination of these components gives, roughly, a wave structure,
‘standing’ in the z co-ordinate but travelling in z and ¢ with a wavelength
A} ~ 500 and the phase velocity C, = 9U,. Itis this standing wave pattern which
gives rise to the longitudinal ‘streaks’ found in the visualization studies of Run-
stadler et al. (1963). The reason these streaks are so clearly visible is that there is
no smaller structure in the flow to disrupt their organization.

Considering next the low & end of the A distributions, we again observe a
strong similarity of shape between the different Reynolds numbers, although the
characteristic wt and k- are lower at the higher U,. This is because the viscid
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scaling which was adopted is not applicable to the large waves. The appropriate

inviscid scaling is:
g z* = z/a, o* = wa|U,,

= y/a, kz = kza!
¥ =zla=0, kf=rk,a.

If these variables are introduced, the low &, end of the A distributions are seen
to coincide very well in shape although the magnitude of 4 for different Reynolds
numbers is somewhat different. (The change of variables corresponds to relative
translation of the 4 distributions along a direction with unit slope in the o™, k;
co-ordinates, the amount of the translation in either o+ or &} being the ratio of
the U, for the cases in question.) The largest waves have an inclination « of
about . Their total wavelength (which is equivalent to transverse wavelength
for this small a) is about one radius for the dominant power and about one-half
the circumference for the limiting size. The C, for the dominant waves corresponds
quite closely to the mean velocity at y/a = 0-1.

It has been pointed out (e.g. Bradshaw 1967) that for stations in the log layer
and for the central range of wave-numbers the distribution of power among
the wave-numbers should scale solely on the basis of the distance to the surface.
If we ignore the small variations in convective velocity for waves in this range so
that wt can be replaced by a multiple of £, then the spectrum function appearing
on the left side of (11) can be written with the arguments Pt k7, y*) or, better
still, P(ki;, 2, y+). The implication of the Bradshaw (1967) remark is that these
arguments must appear in combination thus: .@(ktoty'F a). On the other hand,
geometric similarity as described by (11) requires that all dependence of Pony+
be incorporated in f. Combining these two requirements, the fact that 4 is inde-
pendent of y+ means that it must be independent of &, as well. That is, 4 may
depend only on « in the central range of wave-numbers. While figures 8, 9 and 11
show that this prediction is not strictly upheld, yet neither is it at gross variance
with the data. A qualitative explanation of the discrepancy can be made on the
basis that the sublayer waves are the strongest at « ~ } while the largest waves
are strongest at o ~ . The intermediate distribution of 4 provides a smooth
transition between these limits and cannot therefore be completely independent
of kit;;. However, we may also conjecture that at much higher Reynolds numbers
than those tested here the gradient of A4 in ki,; at constant o will be negligibly
small.

The A distributions for the three Reynolds numbers may be described as
more or less uniform in & between the two limits established by viscosity at the
high % and tube dimension at the low k end. The extent of the distribution in
o at any k, between these limits is roughly independent of %,, spanning a range
of about 10:1 in w. If Reynolds number is decreased steadily, the two k limits
may be projected to approach each other. Roughly,

(k;_)max _ 0'04
k )mn — 2v/aly’

leading to the conclusion that no waves will exist for aU, /v < 50. This corresponds
to B < 900 which is in good agreement with the accepted lower limit for turbulent
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tube flow. An interesting conclusion which can be drawn from this view of the
structure ‘shrinking’ down to a pure sublayer form as R is decreased, is that the
waves of sublayer size must be able to sustain themselves without the infusion
of energy from any larger waves in the flow.

One implication of uniform distribution of 4 between the k, limits is that the
u velocity fluctuations observed in the sublayer, say at y* = 10, will move pro-
gressively to smaller average k as R is increased. Compare, for example, figures
7(n) and 7 (¢) and observe how the lower &} are in much greater evidence at the
high Reynolds number. The effect is quite gradual since the influence of very
large waves is reduced according to the observed behaviour of the wave intensity
function, f, at the low ki, y+ end. Nevertheless, the relative intensity of the small
sublayer waves should continue to diminish (roughly as R—%). Assuming this prog-
nosis is indeed borne out by subsequent data at much higher R, it is curious that
the mean velocity profile in the sublayer-buffer layer region should remain
unchanged as the characteristic size of the local wave structure increases.

6. Conclusion

When this experimental study was embarked upon, the existence of periodic
transverse structure in the sublayer was known from visual evidence (Runstadler,
Kline & Reynolds 1963), and the initial work was directed toward confirming
this with hot-wire measurement. Since visualization methods gave little evidence
of transverse periodicity in larger sizes, we proceeded through the present study
with an innate bias that the smallest waves which lie wholly in the sublayer and
buffer layer were somehow different from the larger waves which involve the
log layer. Therefore, it was with considerable surprise that we discovered a simple
intensity correction procedure (§3) which brings sublayer waves (which must
have strong viscid effects) into the family of log layer waves. While this result
simplifies the task of reporting the data, it is not easy to understand why it
happens.

One major limitation in this work is imposed by the absence of correlations
with y, + y,. The reader is cautioned not to interpret the wave intensity function
[ too literally as the y distribution of 4. As discussed in the appendix, it is not
likely that all waves of a given size, kiot, Will have precisely the same #4(y), so
the measured f must be interpreted as an ensemble average of the intensity distri-
butions of all the actual waves. To obtain a measure of the ‘spread’ of the distri-
butions about the average requires the detailed data given by radial correlations.
Of course these correlations contain much more information than just intensity,
and will give the relative phase of the velocity components at different y as well
(i.e. the full complex functions A, and A, introduced in the appendix).

While the component % is by far the easiest to measure, it is unfortunate that
it is a combination of the natural wave components % and #. Only the component
v remains invariant with wave angle, and therefore is the only one which can be
used by itself to test the similarity hypothesis over a large angle range. However,
it is very difficult to measure v close to a surface, so it may be necessary to resort
to v and w at low y*. This is especially unpleasant, since three correlations,
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ww, ww and uw, must all be measured. Thus, while the similarity hypothesis
points ultimately to a very compact complete description of turbulence in tubes,
it is certain that much additional careful work will be required before all the de-
tails have been nailed down. The success of the similarity hypothesis also gives
hope that the mechanism of wave interactions, by which this entire equilibrium
structure is sustained, can be described in equally concise terms.

We will close with a remark about the implications of the present results to
theoretical analysis of turbulent tube flow. The only logical interpretation of the
data is that dominant turbulence energy found at any station in the flow is in
structures which extend all the way from that station to the surface. Thus, for
equilibrium turbulent flows of this kind, and equilibrium boundary layers must
be included in that definition, analysis which is concerned with disturbances
small compared with the distance from the surface is dealing, at best, with a very
small part of the turbulence.

Appendix. Some analytic implications of geometric similarity

A wave of the kind pictured in figure 8 is two-dimensional since 9/62 = 0.
Throughout this appendix we will use letter subscripts to indicate partial
differentiation. The continuity equation for the turbulence components, » and @,

Uy+’LlA)2=O (Al)

leads to the stream function, ¥(y,2) for which

v=—1Yp D=y, (A2)

The Navier-Stokes equations are then
V2 +o(Vip, 4+ U, sine) + (D4 Usina) Vi, = vViy, (A 3)
g+ (8, + U, cosa) + (@ + Usina) 4, = vV24, (A4)

where V2 is simply (82/0y?) + (%/022). Geometrically similar wave solutions can be
ritten I the Oy — by(@) (ly) exp itz — O, A5)

@ = by(cx) hylky) exp {jh(2— C1)}, (A 6)
where £, and h, are complex functions. The appropriate mean velocity distribu-
tion is U = B+ B,logy. (A7)

Substitution of these three into the Navier—Stokes equations yields

c B Baby by . vkby(Ri"—2R1+ hl): .
{[(U_gﬁ) byl —hy) — oy)? ]smcx 7 exp{jk(z— Ct)}

= non-linear terms, (A 8)

{(U— .O )bzkzsina+1ﬁbl—klcosa
sine ky

_ ‘ﬂhr_kz)} exp {jk(z—Ct)}

= non-linear terms, (A9)
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where the superseript primes indicate differentiation. If the non-linear terms are
ignored, the first of these is the familiar Orr—Sommerfeld equation with a special
choice of average velocity profile. At Reynolds numbers of interest here, the
viscid terms are very small, yet in a purely linear theory they must be retained
at the critical layer where U = Cfsine, and in the sublayer where y ~ 0. In
fully developed turbulent flow it is the non-linear terms which assume importance
at the critical layer. Viscous influences are significant only in the sublayer, and
for present purposes may be neglected. The brief analysis here is not complete
enough to handle correctly the wave interactions which figure in a non-linear
theory so this will not be attempted.

Consider then the linear inviscid terms in (A 8). In order that these be inde-
pendent of absolute scale, %, it is necessary that U — C[sin« be a function of ky
only. This is equivalent to the condition

c

sina

= B, — B,logmk, (A 10)

where m is an arbitrary constant. Comparison with (A 7) shows that

c
sina = U(?/o), (A 11)
where Yok = 1jm. (A12)

The wave speed is seen to match the mean velocity component (projected into
the wave cross-section) at a distance from the surface inverse to k. That is, the
location of the critical layer is geometrically scaled.

Consider next the linear inviscid terms in (A 9). In order that these terms be
independent of « it is necessary that

b,y/b, = cota. (A 13)

Thuswe anticipate that waves with small inclination should have # much stronger
than v or @, while the reverse should be true for waves with large «. This be-
haviour is confirmed by surface pressure fluctuation data. Since surface pressure
is related to the v and @ components (by integration of the ¥ momentum equation)
the fact that surface pressure correlations are dominated by waves of large ot
means that the same must be true of » and @. By contrast, the longitudinal
turbulence velocity is dominated by waves of small .

The longitudinal turbulence component which constitutes the data of this
paper is

U= fcosa+dsina, (A14)
which may be squared to give

u? = @2 cos®a + A cosasin a + Bsina. (A 15)

t The first date of this kind was given by Willmarth & Wooldridge (1962). A more
complete picture is given by Bull (1963).
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From (A2), (A5), (A6) and (A14) the time-average part of the quadratic
functions are 22 = Lh, L2,

4 = H(hghi* +hE ) b,b, (A16)

@* = hy hy*bY,
where the superscript * denotes complex conjugate. Now if h, were to be a pre-
cisely determined function then h,2¥ would be exactly a scalar multiple of f(ky)
given in figure 9. More likely, waves of a given k are associated with a distribution
of functions, k,. Then f(ky) must be regarded as an ensemble average of this
distribution and the statement of geometric similarity is extended to the en-
semble. Taking ensemble averages (with respect to A, and 4,) of (A 16) we have

E,\%%) = f(ky) b3,

E,[a®] = g,(ky) b, b,, (A17)
B [%%] = gy(ky) b,
where 91 = Epl3(hohy* + 13 1)), (A18)

g2 = Erl}hihi*],
are both functions which have not yet been experimentally measured. An

ensemble average of (A 15) can also be taken and then simplified with the aid
of (A13) and (A 18) to

E,ju?] = bj(fcosta+ g, cos?asin?a + g,sind et)/cos®a. (A19)

This function enclosed in parenthesis shows how the composition of E[«?] changes
from f to g, to g, as a increases from 0 to 3.
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